
JOURNAL OF COMPUTATIONAL PHYSICS 53, 299-318 (1984)

The Use of Nonrational Functions
to Represent Steep Front Solutions

to Partial Differential Equations

JOHN GREENSTADT

IBM Corporation, Palo Alto ScientiJic Center, 1530 Page Mill Road,
Palo Alto, California 94304

Received January 26, 1983; revised July 6, 1983

It is shown, by calculated examples, that it is possible to follow successfully the
development and evolution of steep fronts (almost to but not including actual discontinuities)
in the solution of time-dependent partial differential equations by means of global non-rational
representations. A characteristic steplike shape forms the basis for the representations; the
hyperbolic tangent and a function involving a square root, both having this characteristic
shape, gave similar results. The Method of Lines, specifically as formulated by Gelinas, Doss
and Miller (J. Comput. Phys. 40 (1981), 202-249) was used to form a system of ordinary
differential equations governing the time-variation of the parameters in the representation. A
fixed-shape moving solution of the wave equation, and developing steep fronts in solutions of
Burgers’ equation and of the Buckley-Leverett equation were successfully computed. The
results are all displayed in the form of plotted profiles, and are compared with the
corresponding results in the literature.

1. INTRODUCTION

In the course of solving time-dependent nonlinear partial differential equations, it
frequently happens that steep gradients occur in the solution along particular
submanifolds in the configuration space (points in one-dimensional problems, curves
in 2D, surfaces in 3D, etc.). These submanifolds are generally called “fronts.” In
many problems, the gradients may become so large that the solution is often treated
as if it really is discontinuous across the submanifold.

If the solution is not really discontinuous, we may simply refer to it as a “steep
front,” partly to distinguish it from a genuine shock, across which the solution has to
satisfy special interface conditions. Clearly, if the solution remains continuous, there
will be no need for special conditions, since we simply require the solution to satisfy
the partial differential equation (PDE) at all points in the domain of interest.

When a PDE is discretized for the purpose of solving it on a digital computer, the
problem arises of approximating (or “representing”) the solution at the front within
the framework of the discretization. There are several ways of doing this:

(a) When a simple finite-difference discretization is used, the solution is

assumed to make the transition across the front in a few grid points. When the grid
299

0021-9991/84 $3.00
Copyright @ 1984 by Academic Press, Inc.

All rights of reproductmn in any form reserved.

300 JOHN GREENSTADT

spacing is not fine enough to handle the steepness which may be present, the resulting
“smoothing” (and often spurious oscillation) of the finite-difference solution is
sometimes called “grid dispersion.”

(b) To correct this error, the entire grid may be made fine enough to represent
whatever steepness is deemed sufficient. This, of course, increases the number of grid
points greatly, and increases the calculation time accordingly.

(c) To avoid having too many grid points, the finite-difference grid may be
refined locally, so that the fine mesh covers only the vicinity of the front. This
procedure may involve considerable logistical problems in the computer program, as
well as theoretical problems associated with the interpolation from the coarse to the
locally fine grid.

(d) If the front is really a discontinuity, it is necessary to solve a set of
Riemann problems at each time step. This method eliminates the dispersion problem
completely, even with a relatively coarse mesh, but it is somewhat complicated (since
every mesh interval at every time slice is a candidate for a shock), and when
implemented as the so-called “Random Choice” method, yields solutions with
substantial superimposed noise [11.

(e) When the finite element method is used, the grid refinement problem
persists, and may be handled in the same ways as for the finite-difference method.
The single exception is the so-called moving finite element (MFE) method (2 1, in
which the grid points (or nodes) are caused to move by the direct action of the
differential equation itself. The MFE method is a special case of the method of lines,
but it has the virtue that the grid really does refine itself automatically wherever there
is rapid variation in the solution. This method, which is currently being studied for
2D problems, appears to be one of the most flexible and general for front-tracking.

The reason that the finite-difference and finite element methods require
considerable refinement of the grid whenever there is a steep front, is that they both
use polynomial representations of the solution, and it is well known that polynomials
are ill-suited to represent really rapid variations in function values. For this reason,
we have considered the use of alternative classes of functions, since some of them are
capable of making the transition from slow to very rapid variation, with only modest
changes in the parameters which characterize the solution.

There is ample historical precedent for this approach. Even for one of the simplest
ordinary differential equations, the linear one with constant coefficients. it is easy to
choose the characteristic frequencies (i.e., the eigenvalues) so that a polynomial
representation of the solution (on which almost all the standard numerical solution
methods are based), has very great difficulty in following the rapid variations. These
are the well-known “stiff’ equations. On the other hand, by using the familiar Ansafz
of representing the solution as a sum of exponentials with the parameters appearing
nonlinearly in the exponents, the solution of the problem is reduced to a more
elementary one, that of solving an algebraic equation for its roots.

Another example, from classical mechanics, is the use of a nonlinear representation

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 301

of the orbit of a planet, e.g., the well-known polar formula for an unperturbed orbit.
The parameters of this representation are then allowed to vary (slowly) with time,
and they can then account for the precession of the orbit as well as for secular
changes in its eccentricity.

We have adopted this approach in an attempt to represent steep fronts without the
need for excessive mesh refinement. What we shall describe is more a “proof of prin-
ciple” than a practical, working method. As we shall see, we become embroiled in
time-consuming adaptive quadrature (which breaks down completely when the front
steepness becomes extremely large), the calculation of “pseudopseudoinverses,” and
other complications. However, we shall indicate at the conclusion how the general
idea might be adapted to a more practical computation scheme for solving steep-front
problems.

2. GENERAL FORM OF THE PROBLEM

We shall model our treatment of the steep-front problem along the lines described
in the paper of Gelinas, Doss, and Miller [2]. Their provocative idea of the use of a
nonlinear parametrization of the approximate solution served as the inspiration for
the method presented here.

The equation to be solved has the form

(2.1)

In all of our examples, we shall have x ranging from 0 to 2 and t ranging from 0 on.
The amplitude of the propagating disturbance which may form a steep front is U, and

f(u) is a function which defines the nonlinear character of the equation. The second
derivative term on the right-hand side represents a possible dissipative effect which
we shall sometimes include, although in most of our examples, F = 0. Iff(u) = U, we
have the first-order wave equation, which waves traveling to the right; iff(u) = +u’,
we have a version of the Burgers equation., and iff(u) is given by the function

then Eq. (2.1) is a simplified version of the Buckley-Leverett equation describing the
flow of two miscible fluids through a porous medium. We were primarily interested in
solving this last equation using our method.

We can follow the formal development of [2] quite far before introducing special
representations. The first step, which is a form of the well-known method of lines, is
to represent the dependent variable u as a predetermined function of the configuration
variable x, and a set of parameters (ai(i = l,..., M} which carry all of the time-
dependence of u(x, t). Thus

u(x, t) = v/lx, a(t>J* (2.3)

302 JOHN GREENSTADT

(In [2], the function w is a one-dimensional finite element representation, using linear
splines and mombEe nodes.) The time derivative au/at can then be expressed solely in
terms of the time derivatives of the u’s as

For convenience, we shall define the operator L (in x) as

so that (2.1) takes the form

au
x=Lu.

(2.4)

(2.5)

(2.6)

Now, since there are only M a’s, the representation (2.3) cannot in general be the
exact solution to Eq. (2.6). Therefore, a system of equations must be constructed, It4
in number, to enable the appropriate values of {ai} to be found.

The simplest method for doing this is to multiply (2.6) by each of the (au/&,} in
turn, and then integrate with respect to x over the interval [0,2]. The result is the
system

where

and

(2.8a)

(2.8b)

and the “inner product” bracket is defined by

(A,B)=J~A(x)B(x)~x. (2.9)

The same set of Eqs. (2.7) can be derived from a variational principal of sorts.
When the approximation for u is used, there will, in general, be a residual, defined by

NONRATIONALFUNCTIONS FOR STEEP FRONTS 303

and, if we define the squared norm of R in terms of the inner product, namely,

IIR II2 = (R, R), (2.11)

then Eq. (2.7) can be derived by requiring the norm of R to be a minimum with
respect to variations in {ii}.

If Eqs. (2.7) are solved, we should expect the a’s to evolve through time in such a
way as to maintain the representation ~[x, a(t)] as a reasonable approximation to the
true solution u(x, t). In [2], it is shown by various examples that the MFE method is
quite capable of providing good solutions of (2.1) for the three forms off(u). In the
next section, we shall describe the class of representations with which we attempt to
accomplish the same result.

3. STEPLIKE FUNCTIONAL REPRESENTATIONS

If we accept the inadequacy of polynomial representations for steep-fronts, then we
must ask what other functional forms are available. Rational approximations have
been studied much, but they too, seem to suffer from the same inability to make a
transition from a mildly varying function to a rapidly varying one with only modest
changes in the key parameter. On a finite segment, rational approximations can
doubtless be constructed which have this desirable property, but they too, have a
tendency to vary vigorously where it is not desired that they should.

We shall try to find some guidance in the selection of representations by the
heuristic approach of asking what kinds of functions (of a scale-free variable v) can
represent a “step” on the infinite line [-co, fco]. That is, if u --f -co, the “steplike”
function S(V) should approach a limit A, and if u + +GO, the function S should
approach a dz~ferent limit B. Consider u to range over the complex plane, in which
the real line is imbedded, and consider the class of analytic functions whose only
singularities in the finite plane are at worst poles (i.e., the meromorphic functions). In
this case, the point at infinity cannot be a regular point, or A and B would be the
same; nor can it be a pole, or A and B would be infinite, a condition which would
render w useless as a step representation. Therefore, if S is to be meromorphic, the
point at co must be an essential singularity, since almost any value can be the limit
as ZJ -+ co in various directions. Conversely, if we insist that co be a regular point,
then S cannot be a meromorphic function, but must have either essential singularities
or branch points in the finite plane [3]. In case S is required to be bounded in the
finite plane, we are led to consider either nonmeromorphic functions with co as a
regular point, or entire functions with an essential singularity at co, so that we can
then have A and B finite but different. This rules out the class of rational functions
(naturally including the polynomials).

There are many possible candidates for “step” representations S(v), but the two
simplest ones we have condidered are the hyperbolic tangent

S(v) = tanh u (3.1)

5x1/53:2 7

304 JOHN GREENSTADT

and the irrational algebraic function

(3.2)

Both of these functions go to -1 at -co, and fl at +a~. The hyperbolic tangent does
so because it is an entire function with an essential singularity at co, and goes to
different limits when that point is “approached” in different directions, and the square
root function because it has branch points at +i and -i. If a branch cut is made,
starting from +i and going up the imaginary axis, through the point at co, and back
up to -i from below, then any path that starts out to the right on the real axis, goes
through the point at co and then returns from the left, will have passed the cut, and
will be on the other sheet of the Riemann surface defined by the cut, thus returning
with the other value.

In order to allow for varying steepness and position of our step, we relate the
argument v to the original variable x of the problem by

u = Ul(X -a,), (3.2a)

where u2 is obviously the location of the front, and we shall refer to a, as the
steepness parameter. In the particular applications we have considered, it has been
more convenient to use a step-function whose values go from 0 to 1, instead of from
-1 to 1. We use the new step-function S*(v), defined by

s*(v) = #(?I) + 11. (3.2b)

We can henceforth drop the asterisk, because we shall use the 0 + 1 step-function
from now on.

With this choice of S(u), we note that 1 - S(v) is a step that goes from 1 to 0, as
is the function S(-u). If we now imagine that the steepness parameter a, is a very
large negative number, then the function S[u,(x - a*)] is essentially unity from 0 to
u2, and nearly vanishes from a2 to 2, while its “complementary” function 1 - S does
just the opposite. Hence, the step-function divides the interval (0, 21 into two
“regimes” in the following sense: If we have two “shape” functions, Q,(x) and Q;(x)
defined over [O, 21, then the function

v(x)= Q,(x) . Sla,(x - 41 + Q?(x) . (1 - sla,(x-aAl> (3.3)

has essentially the shape of Q, from 0 to a, and that of QF from a, to 2. We can
simplify this form by combining the coefficients of S, and redefining Q, - Q: to be
just Q,, so that we end up with

v(x) = Q,(x) . Sla,(x - 41 + Q?(x). (3.4)

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 305

In the problems we shall consider, these shapes are fairly smooth and simple, so it
suffices to choose low-order polynomials for the Q’s, and we shall allocate more of
the u’s to these functions. For convenience, we shall use the notation a: to denote the
set of parameters {~i,i,ai,~ ,..., a,,,,,}, and a: to denote (a,,,, u2,* ,..., aI,,,,,}. Thus, we
are dealing with a total of 2 + M, + M, parameters in the representation of the
function w. These parameters, (a,, a2, a,,, , u,.~ ,..., a2, i, a,,, ,..., u~,,~~}, we shall
denote simply by a.

At this point, it is useful to incorporate the boundary conditions on v into its
representation, so that they wil be automatically satisfied. In this way, the total
(2 + M, + M,) parameters {a} will not be constrained in any way. This is usually not
the best way of handling boundary constraints; rather, a more symmetrical a
posteriori imposition of these constraints makes for a more flexible algorithm. Unfor-
tunately, there was no opportunity to investigate such an improved boundary
constraint procedure, so the method of explicit construction was adhered to for this
study. As can be seen from Eq. (3.7), the correction to w is very complicated, and
obviously depends on the type of b.c. (i.e., Dirichlet or Neumann). For this reason
alone, we have limited the scope of this work, and have considered only the following
b.c.‘s, which were used for the Buckley-Leverett problem in the literature

@,a)= 1, (3.5a)

Accordingly, if we now define

Q,(x, a?) = F‘ a, ixi-i - 3

and
i- I

where

Q,*(x, a:) = w, + w2(x - 2) + Q& a$>, (3.6b)

Q,(x, a:) = \‘ u*,~(x - 2)‘+ ’
ill

(3.6~)

we can choose W, and w2 so that w will automatically satisfy the boundary
conditions. W, and w2 are, as indicated above, rather complicated functions of the a’s.
If we define

v, z a,(0 - a,);

s, 3 S(v,);

WV> P(v) ZE -g P, = P(v& P, = P(vz),

306 JOHNGREENSTADT

w, and w2 have the values

wz = -(Q;(2) . S, + Q,(2) . Pzh

w, = 1 - (Q,(O) . S,, + Q,(O)> + 2~1.

(3.8a)

(3.8b)

We also need initial conditions in order to start the integration of the system (2.7).
We have dealt with this problem by first selecting the appropriate function which has
the shape desired for a particular case, and then doing a least-squares fit of the
functional form (3.4) to find the best values of the a’s for that shape. The minimum
set of a’s is used which can give a good fit to the true initial function. This approx-
imation is then used as the initial condition for the integration. It would also be
possible to generate a more flexible (but undetermined) representation by including
more parameters than necessary for the initial fit, but this interesting line of
investigation falls outside the scope of the work described here.

It is important to note that the system matrix which results from the application of
the Gauss-Newton method of solving the least-squares problem is identical with that
which arises in the method of lines, viz., the A-matrix defined by (2.8a). Hence, if we
restrict the condition number of the ODE matrix, it is of little use to try to resolve the
fit to better than what is feasible with an A-matrix of similar condition. Hence, the
least-squares fit is done using the same “pseudoinverse” technique as is used in
solving the ODE system.

4. INTEGRATION OF THE ODE SYSTEM

The first computational problem we face in solving (2.7) is the evaluation of the
inner products defined in (2.8) to sufficient accuracy. True, some of these quadratures
can be evaluated analytically, but many of the most important ones cannot, either for
the hyperbolic tangent or the square-root forms of S(v). For the sake of simplicity in
our APL program, we took the position of evaluating all of the inner products by
numerical quadrature, using an adaptive Newton-Cotes (6 th-order) procedure similar
to that described in the book of Forsythe et al. 14, Chap. 51.

With this method, we first specify the maximum allowable estimated error relative
to the maximum magnitude attained by the running value of the integral as the
quadrature progresses. If the final relative error is too large, we redo the calculation
with a more stringent stepsize criterion, and repeat this cycle until the accuracy
requirement is met; otherwise, after a fixed number of tries, the quadrature program
gives up, and declares the relative error to be zero. The reason for this is that
extensive observation and testing have shown that these ultimate failures occurred
only when the true value of the integral itself was less in magnitude than the rounding
error-in other words, a “zero.”

As the matrix A is being computed, each new estimated relative error is compared

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 307

in magnitude with the maximum of those that have previously been computed, and
the larger of the two is retained. In this way, the maximum relative error in A
(MREA) is determined, as a measure of the perturbation of the true A due to
quadrature error.

Even with the highest relative accuracy which was specified (a relative error
bounded below, in some cases, by lo-“), the eigenvalues of the matrix A, in Eq. (2.7)
had a magnitude variation greater than lop6 by several orders of magnitude,
indicating that the computed matrix A was effectively singular. Hence, it was
impossible to solve the system (2.7) for the derivatives (cii}, and hence, the system
could not be cast in the standard form required for the available ODE solvers.

It was therefore necessary to think in terms of using some sort of pseudoinverse of
A, instead of trying to solve the singular system (2.7). After much experimentation, a
way was found of “doctoring” the computed eigenvalues of A for use in the pseudoin-
verse A + . The standard procedure of suppressing (in the pseudoinverse) those eigen-
values whose magnitudes are less than a fixed multiple (PIVTHR) of the largest, did
not work in practice. It seemed that the “wrong” set of eigenvalues and eigenvectors
was being suppressed. However, when the A-matrix was prescaled by suitably
multiplying rows and columns so that the resulting “A*” was still symmetric, but had
unit values on its main diagonal, the very same eigenvalue suppression procedure
previously used behaved quite differently, and the solutions of the resulting system
began to look reasonable.

Initially, an APL version of the Gear-Hindmarsh code [S] (kindly supplied by Dr.
Sandy Roberts) was used, and gave creditable reults, but it was ultimately determined
that the system (2.7) is not stiff, and hence, that the rather elaborate Gear procedures
are not necessary. Further, because of the noisy nature of the “right-hand side” (i.e.,
A +6) of the ODE system, due to the randomly fluctuating eigenvalues, even the
implicit Adams scheme which is included in the Gear-Hindmarsh code for non-stiff
problems, gave rise to very considerable difficulty. In fact, the corrector phase of the
predictor-corrector procedure often failed to converge, even when the a’s were varying
smoothly.

To improve efficiency, the Runge-Kutta-Fehlberg method [4, Chap. 61 was tried,
with an adaptive step determination similar in nature to that used in the quadrature.
This explicit method (described briefly in the Appendix) worked very nicely, with
little of the backtracking experienced with the implicit Adams code. Even so, the
“roughness” of the ODE system, because of rank changes in A ’ due to variations in
the eigenvalues, caused unduly small steps to be selected.

To help overcome the effect of the noisiness of the estimated relative errors, a type
of “soft” rank determination was devised. We shall describe this in terms of the ratios
{ni/J.,), which we denote by {pi). (The corresponding procedures in terms of the 1’s
are more complicated to explain, but are equivalent.) Our original rank determination
was based on setting the reciprocals of all those p’s less than PIVTHR to zero. This
is the same as giving all of these small p’s the value co, and then taking reciprocals as
if they were bounded. We can do something analogous to this by first constructing a
function #@) with the following properties:

308 JOHN GREENSTADT

(1) 4(l)= 13
(2) +(lYaP = 13
(3) 4 -+ co as p + 0,

(4) $ has a minimum at pm (-PIVTHR).

A simple function with these properties has the form

6@) = a + bp + co-‘, (4.1)

where, if we define D to be 1 +P;‘~+“, a, b, and c are given by:

(4.2a)

b=@, (‘+ “)/D, (4.2b)

c = l/(kD). (4.2~)

After some experimentation, it was found that a value for k of about 6 gave the right
cutoff properties for 4(p). The p-values were then evaluated via

P*=$@)* (4.3)

Of course, after the application of #, it was only necessary to take the ordinary
inverse.

By the use of the adaptive Runge-Kutta-Fehlberg scheme, and the q-mapping of
the eigenvalues described above, we were able to integrate (2.7) in a quite satisfactory
way. In the next section, we shall show some of the profiles that were generated by
solving (2.7) using these means.

5. NUMERICAL TESTS

Preliminary experiments indicated that the square-root form of the step-function
was handled more easily by the quadrature routine, and the front-shapes were as
satisfactory as those obtained with the tanh function. We therefore used the square-
root function for almost all of the tests, except as noted explicitly. The specified
relative accuracy for the quadratures was chosen to be that power of 10 which was
just below the smallest p, except that it was constrained to lie between 0.001 and
lo-‘. The upper bound on the MREA was necessary in order to obtain reasonably
accurate and stable values of the Aij’s,

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 309

resemble the correct one. The lower bound was set because of the rapidly increasing
time and difficulty for the adaptive quadrature to satisfy the accuracy requirement for
diminishing values of the latter. It was simply not practical to require the MREA to
fall below lo-‘. The adaptive quadrature also had greater difficulty in meeting the
accuracy requirement for very large values of the steepness parameter a,. In fact, for
magnitudes of the latter much above 100, it was not practical to demand that it
should. Hence, we did not attempt to push the time beyond this point.

Our experience has shown that if the steepness magnitude gets beyond about 100,
it is then necessary, in order to continue the solution, to regard the front as a true
discontinuity, and use for S(V) a real step-function. The adaptive quadrature would
then have to take cognizance of the real division of the interval [O, 21 into two subin-
tervals in order to get accurate values. The pulse function would be a real d-function
etc., and the evaluation of {Aii} would have to be done somewhat differently for these
special functions. We have not had the opportunity to attempt an investigation of this
variant of the general approach.

Case 1 (Traveling square wavefront). The purpose of this test was to determine
if the formalism described in Sections 3 and 4 would even allow a simple steep
wavefront to propagate as a solution of the first-order wave equation. Therefore, the
function f(u) was set equal to U, and the initial condition was described by the
function

U(x,O)=a,,,S(a,(x-a,)J +a,,, (5.1)

with a, = -50, a,=0.3, a,,, =0.8, and a,,, = 0.2. Because of the influence of the
right-hand boundary condition and the inclusion of the correction involving w, and
w2, the least-squares approximation ~(x, 0; a) had somewhat different values of the
a’s. The actual starting values for a,, a2, a,,,, a,,, were, respectively, 49.8497,
0.299961, 0.800689, 8.2 x 10m5, which, except for a,., , are obviously close to the
initially chosen values.

The integration of the system (2.7) was done, and the results for v/(x, t) are plotted
in Fig. 1 (where the abscissa is x and the ordinate is I+Y. The dotted curve is the initial

FIG. 1. Traveling steep wavefront. Solution of wave equation, E = 0. Square-root step-function;
2 + 1 + 1 = 4 parameters (u’s) in representation.

310 JOHN GREENSTADT

condition.) As can be seen, the wavefront is very stable, and the final values for the
a’s, at t = 1, are -50.2182, 1.29998, 0.800186, 1.7 x 10m4. This example thus
demonstrates a remarkable fidelity of the representation to the actual wave solution,
considering that the prescribed relative quadrature accuracy was mostly only .OOl.

Case 2 (Gradually forming Shockfront). For f(u) = iu*, Eq. (2.1) becomes a
form of Burgers’ equation. The initial condition was set equal to the best fit to the
function

u(x, 0) = 0.6 + 0.4 . cos($cx). (5.2)

A good fit was obtained using only 1 extra parameter a ,,, in Q, and likewise in Q,,
for a total of 4 parameters in ~(x, 0, a). As can be seen in Fig. 2, a front formed in a
reasonable way. (In the course of this investigation, these curves gave the first sign
that this method was capable of following the formation and propagation of steep
fronts.) With no dissipation (s = 0), the program proved incapable of integrating the
ODE system beyond the output point for t = 1.6. For that time value, the steepness
was over 144 in magnitude, and the values of this parameter were rising into the
thousands during the following integration steps. For such large values of u,, the
quadrature routine could not achieve the required relative accuracy.

Case 3 (Miscible displacement front). For f(u) given by (2.2), we have the
Buckley-Leverett equation. This was solved (for a = 0.5) with the initial condition

0.1
u(x, 0) = ~

0.1 tx’

It took 3 parameters in Q, , and the same number in Qz to get a good tit of ~(x, 0, a)
to u(x, 0). The results of the integration of the ODE system are shown in Fig. 3. The
same problem of excessive steepness was encountered in extending the calculation
beyond t = 0.4.

To demonstrate the lack of serious stiffness, the 8 parameters in this representation
are plotted against time, using cubic splines to interpolate between the data points,
which occur at intervals of 0.05 in the time. In Fig. 4, the first 5 parameters, which

FIG. 2. Developing steep wavefront. Solution of Burgers’ equation, E = 0. Square-root step-function;
2 + 1 + 1 = 4 parameters.

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 311

FIG. 3. Developing steep front. Solution of Buckley-Leverett equation, E = 0. Square-root step-
function; 2 + 3 + 3 = 8 parameters.

FIG. 4. Changes in parameters with time. Buckley-Leverett case, E = 0. Square-root step-function;
first 5 parameters on semilog plot.

FIG. 5. Changes in parameters with time. Buckley-Leverett case, c = 0. Square-root step-function:
last 3 parameters on linear plot.

1

.8

.6

.4

.2

00

FIG. 6. Developing steep front. Solution of Buckley-Leverett equation, E = 0. Tanh step-function:
2 + 3 + 3 = 8 parameters.

312 JOHN GREENSTADT

00 .5 1 1.5 2

FE. 7. Developing steep front. Solution of Buckley-Leverett equation, E = 0.01. Square-root step
function; 2 $ 3 + 3 = 8 parameters.

A

”

or
0 0.2 0.4 0.6 0.a 1 .o

1

0.8

0.6

u

a.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ;

*

0

FIG. 8. Results of Buckley-Leverett solution, with E = 0, from literature for comparison. (a) Concus
and Proskurowsky [I], (b) Gelinas, Doss, and Miller 121,

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 313

are sizable and do not change sign, are shown plotted on a semilog scale. The last 3
parameters are much smaller, and the 8 th one changes sign. These are shown on an
ordinary linear plot in Fig. 5. It is fair to say that the variation of the parameters,
even when the steep-front is forming, is not as drastic as one would expect for the
solution of a stiff problem. The initial steepness of a two of the parameters on the
semilog plot is due mainly to the fact that their starting values are close to zero. The
jog in one of the curves (which happens to be for a,) is associated with the transition
to a jump discontinuity which occurs (somewhat earlier) in the true solution.

For purposes of comparison, the same problem has been done using the transcen-
dental tanh step-function. The results are shown in Fig. 6. The profiles are almost
identical with those of Fig. 3, although the tanh step-function seems less able to
continue when the steepness exceeds about 50 in magnitude.

All of the preceding calculations were done with F = 0. The fact that the represen-
tation contains only 8 degrees of freedom introduces a certain “rigidity” which tends
to act somewhat like an artificial dissipation, in that it “softens the corners.”
However, it is still of interest to try the Buckley-Leverett example with a
nonvanishing E. Figure 7 shows the result of setting E = 0.01. The effect of the
dissipative part is to soften the front (i.e., to limit its steepness), to the extent that it
can be followed much farther. We have stopped the calculation at t = 0.6.

Finally, in Fig. 8, we have reproduced the curves generated by Concus and
Proskurowski, and by Gelinas, Doss, and Miller, so that our results can be compared
with theirs.

6. DISCUSSION

What we have shown by these relatively simple examples, is that steep-front
problems can be solved without the necessity of using refined meshes or grids,
although we are not claiming that the latter is not a good approach, but only that it is
not the on& approach. By using representations more general than rational functions
alone, it appears to be feasible to maintain a coarse grid, and still describe a rapidly
varying function. Nor are we recomending the method of lines, in conjunction with
the functional (2.1 I), for the solution of time-dependent problems of this type; in
point of fact, a functional more strongly based on physical principles would seem
preferable. We are also not recommending or suggesting that real problems involving
steep fronts should be solved using only a single domain and a single representation,
as was done here. For real problems, it is almost certainly necessary to subdivide the
domain in which the solution is to be found, if only to allow for more complicated
combinations of steps, ramps, etc.

We conclude that a good generalized discretization method should have a more
natural variational functional, handle time-stepping along more conventional lines
(e.g., as in finite-difference methods), but also have the capability of handling unusual
functions (i.e., not just polynomials or rational functions), such as those discussed
here. Naturally, we have in mind cell discretization as an example of such an

314 JOHN GREENSTADT

algorithm, insofar as we have already used nonpolynomial representations within its
framework, to solve a (simple) eigenvalue problem in [6].

We have so far said nothing about the extension to higher dimensions of the use of
nonrational representations. The first problem would be that of matching these
approximations across interfaces and at boundaries. We believe that the method of
interface moment collocation described in [6] would serve to handle this problem in a
natural way, by allowing for interface discontinuities of the representation, in a
properly controlled manner.

The second problem would be that of a suitable treatment of the “geometrical”
aspects of the steep-front representations in higher dimensions. Instead of a simple
steplike transition at one point, as we have in lD, we must consider a front which is
in the shape of a cUrUe (in 2D; a surface in 3D, etc.). Instead of the equation for a
point, as we obtain by setting u = 0 in Eq. (3.2), we must construct a function
W(x, y; a) such that setting W = 0 defines the curve on which the front lies. (We are
using the symbol “a” to represent a generic set of parameters; that is, whatever is
needed in the problem). For example, if W is a quadratic function of x and ~1, we can
have any conic section be the curve of the front. The next step is to multiply W by a
steepness parameter a,, and define U, the argument of the step-function S(u) by

u = (a, W(x, y; a).

Again assuming only two “regimes” in the subdomain we are working n, we form the
complete representation of the solution exactly as in Eq. (3.4), except that Q, and Q2
are functions of x and y, as well as the additional parameters needed. This is a
reasonable framework for extending this method to higher dimensions, but certainly
there are formidable new problems that will arise.

One of these is that of formulating the right variational functional from which to
derive the equations which will determine the evolution of the u-values through time.
The semi-discretization described in Section 2 leads a set of ODES that is very
sensitive to errors in quadrature, the condition of the A-matrix, etc. This is the main
reason why it seems preferable to solve for the u’s, time-slice by time-slice, even
though this would involve the solution of a highly nonlinear system of equations at
every time step.

There also remains the very difficult problem of finding higher dimensional
quadrature algorithms that would be appropriate for this formulation of the steep-
front problem. There is a serious question as to whether an efficient adaptive
quadrature method is in fact feasible; considering the formidable integrands in (Aii},
this is indeed doubtful.

Finally, we still have the problem in higher dimensions of somehow knowing ahead
of time what sort of shapes, how many, and where, the special representation will
have to approximate within a given subdomain. This might be more of a logistical
problem than a serious theoretical one, but it is certainly non-trivial. Obviously, as in
lD, if a pulselike function is called for, a steplike one will not do, nor will a single
step suffice if more than one actually occurs in the true solution. Within the limited

NONRATIONALFUNCTIONS FOR STEEP FRONTS 315

time allocated to us for this investigation, we were not able to address these rather
daunting problems.

APPENDIX: BRIEF DESCRIPTION OF THE RUNGE-KUTTA-FEHLBERG METHOD

Let y be a vector of N variables {y,(t)}, each depending on the time t, and let us
seek to find a numerical solution to the system of ordinary differential equations
(ODES)

Y =f(Y, t>, (AlI

whereS(y, r) is the vector of given functions {fi} which define the problem. We shall
consider the initial value problem only, with the initial value y(0) given.

The classical Runge-Kutta method is one of the class called single step methods
because, given the value of y,-, (=y(t,_ i)) and a time increment h,, such a method
will yield the approximate value y, (my = y(t,- i + h,)). The well-known system
of formulas for this vector is in terms of certain intermediate vectors (k,, k, , k,, k3),

Y” =yn-I + b(k,, + 2k, + 2k, + kj), (A-2)

where

k,=U-On-,rfn-,)r

(A4)

k, =h,f(~,-, + 4, tn-, + h,J

The truncation error E, of this step, defined as the difference y, -Y, (where 7
signifies the exact value of y), is known to be of the form

E, = C,h;, 644)

where the vector C, depends on the values of the 4 th derivatives of the components
off in the interval [t,-i, t,_, + h,]. This vector is not known, but it can be estimated
by repeating the calculation twice; once over the first half of the interval and once
over the second half. We then obtain

Et, = Cdt US> E,, = c,,<f h,P (4
so that the estimated truncation error of y,*, the value calculated with two half-
intervals, is

E: -y,* -y, = E,, + E,, = (C,, + C,,) 1 ($h,J5. 646)

316 JOHN GREENSTADT

For the purpose of estimating the actual error in terms of h,, we must make some
assumptions about the behavior off. We assume that the vector C “does not vary too
much” in the interval h,, i.e., that

c, = c, + O(h,), (A7)

where C, is some mean value in h,. The same is assumed for C,, and C,, .
Combining (A4), (A6), and (A7), we have, for the difference

d,_y,*-y”=E,*--E,=(~-l).C,h:,+O(h~) (A8)

so that C, can be estimated from A, (which is known). We have

&-j$~h,~A,, (A9)

from which we obtain

E, - +A,, E,* - -&A,. (AlO)

Let us define the measure of relative error p, to be the norm of the vector E,,/yf
(each of whose components is the ratio of corresponding components of E, and y,“).
Usually the best norm is the maximum-magnitude element of this vector of ratios
and, in order to be conservative, we use the “coarse” value E,, but the more accurate,
“line” value y,* . If e, is the relative error bound on y,, we require that

PnGEn. (All)

Clearly, this requirement will be too stringent if some component of y,* should
happen to be too close to zero; in this case, an alternative criterion must be used.
However, we shall not go into these “parasitic” complications, which arise in any
implementation of any algorithm.

Rather, we shall look next at the amount of work that must be done to evaluate J’,
and yx. Three new evaluations off are needed for the first half of y,* (since k,, is
already known, being equal to k,), and an additional four for the second half of y,*.
This makes a total of 4 + 3 + 4 = 11 evaluations for one (compound) step. In an
effort to decrease the work necessary to obtain estimates of the truncation error of an
integration step, i.e., with fewer evaluations off, Fehlberg]7] succeeded in finding the
right special case of the generalized Runge-Kutta algorithm, involving only 6
evaluations off. The general formulas read

where

i-l

Y,-,+ x Pijkj,tn-, +aih" *
j= L

(A’21

(‘4'3)

NONRATIONAL FUNCTIONS FOR STEEP FRONTS 317

The a’s and y’s are 6-vectors, and the p’s may be regarded as forming a 6 x 5 matrix.
These quantities must satisfy the constraints

‘$1 7
T .=y+l,

\’ pii = ai,
7

b414)

pij = 0 for i < j,

but are otherwise arbitrary. Fehlberg managed to find a set of values of {a,}, (yi),
{y:}, and {pij} (these are displayed in [4]) such that y, is correct to the fourth orer in
h,, while y,* is correct to thefiffh order (our notation differs at this point from that
used in [4]). This enables us to compute a “fine” y,*, and also an error estimate
(which we shall again denote by E,), using in all only 6 evaluations off instead
of 11.

Given these estimates for the nth interval, our next objective is to use them to
predict h,, , , such that E,, 1, when calculated, will in all likelihood satisfy the error
criterion for the (n + I)th interval. We still have, for E,, + , ,

E nt, =Cn+,h:,+,, (‘415)

and we assume that C and y do not vary too drastically from one interval to the next;
in fact, we assume that the value]]C/y*l] has the property

Ilc,+,/Y,*,,II~~IlC,/Y~lI~ (‘416)

where M is some positive number of modest size. We then have the relations

P nil -IlCn+J~Lllh~+, GW’,/yW~+,

(A171

Now, if we replace p,+ , by the error bound E,, , , and solve for h, + , , we obtain

(A181

from which h,+l may be estimated. In practice, a value for M of 25 was found to
work well, which means that the otherwise “bare” estimate for h,,, was divided in
half.

As remarked previously, there are many special cases and arbitrary “safety”
procedures in any adaptive code, which we shall not go into here in detail.

318 JOHN GREENSTADT

ACKNOWLEDGMENTS

I am indebted, for useful discussions and advice, to Joe Oliger, Ray Chin, Baxter Armstrong, Sandy
Roberts, Dick Stillman, Piero Sguazzero, and, especially, to Alan Karp. Thanks are also due to the
referees, whose criticisms were very helpful with the clarification and enhancement of the presentation.

REFERENCES

I. P. CONCLJS AND W. PROSKUROWSKI, J. Comput. Phys. 30, (1979) 153-166.
2. R. J. GELINAS, S. K. Doss, AND K. MILLER, J. Compuf. Phys. 40 (1981), 202-249.
3. A. T. MARKUSHEVICH, “Theory of functions of a Complex Variable,” Vol. II. p. 298, Prentice-Hall.

Englewood Cliffs, N.J., 1965.
4. G. E. FORSYTHE, M. A. MALCOLM, AND C. E. MOLER, “Computer Methods for Mathematical

Computations,” Prentice-Hall, Englewood Cliffs, N.J., 1977.
5. A. C. HINDMARSH, “GEAR: Ordinary Differential Equation Solver,” Lawrence Livermore

Laboratory Report, No. UCID-30001, Rev. 3, December 1974.
6. J. GREENSTADT, SIAM J. Sci. Stat. Compuf. 3 (1982) 261-288.
7. E. FEHLBERG, Computing 6 (1970), 61-71.

